Kernel-Type Estimators of Divergence Measures and Its Strong Uniform Consistency

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

UNIFORM IN BANDWIDTH CONSISTENCY OF KERNEL - TYPE FUNCTION ESTIMATORS By

We introduce a general method to prove uniform in bandwidth consistency of kernel-type function estimators. Examples include the kernel density estimator, the Nadaraya–Watson regression estimator and the conditional empirical process. Our results may be useful to establish uniform consistency of data-driven bandwidth kernel-type function estimators.

متن کامل

Weighted Uniform Consistency of Kernel Density Estimators

Let fn denote a kernel density estimator of a continuous density f in d dimensions, bounded and positive. Let (t) be a positive continuous function such that ‖ f β‖∞ < ∞ for some 0 < β < 1/2. Under natural smoothness conditions, necessary and sufficient conditions for the sequence √ nhn 2| loghn | ‖ (t)(fn(t)−Efn(t))‖∞ to be stochastically bounded and to converge a.s. to a constant are obtained...

متن کامل

1 Rates of Strong Uniform Consistency for Multivariate Kernel Density Estimators

Let fn denote the usual kernel density estimator in several dimensions. It is shown that if {an} is a regular band sequence, K is a bounded square integrable kernel of several variables, satisfying some additional mild conditions ((K1) below), and if the data consist of an i.i.d. sample from a distribution possessing a bounded density f with respect to Lebesgue measure on R, then lim supn→∞ √ n...

متن کامل

Universal consistency of kernel nonparametric M-estimators

We prove that in the case of independent and identically distributed random vectors (Xi, Yi) a class of kernel type M-estimators is universally and strongly consistent for conditional M-functionals. The term universal means that the strong consistency holds for all joint probability distributions of (X, Y ). The conditional M-functional minimizes (2.2) for almost every x. In the case M(y) = |y|...

متن کامل

Consistency of Robust Kernel Density Estimators

The kernel density estimator (KDE) based on a radial positive-semidefinite kernel may be viewed as a sample mean in a reproducing kernel Hilbert space. This mean can be viewed as the solution of a least squares problem in that space. Replacing the squared loss with a robust loss yields a robust kernel density estimator (RKDE). Previous work has shown that RKDEs are weighted kernel density estim...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: American Journal of Theoretical and Applied Statistics

سال: 2016

ISSN: 2326-8999

DOI: 10.11648/j.ajtas.20160501.13